Paleogene Oceanography and Climate of the North Atlantic

The key to a regional biostratigraphic scheme

Dr Jonathan Bujak

Bujak Research International Ltd

PORCUPINE

The Challenge

angerlussuaq

To erect a palynological-foraminiferal zonation

for the North Atlantic region including

the North Sea and adjacent basins.

PORCUPINE

The Strategy

angerlussuaq

Integrate the zonation with plate tectonic,

mantle plume, oceanographic and

climatic events that affected the region.

PORCUPINE

The integrated zonation highlights

bioevent diachronism in

different basins that resulted from

the greenhouse to icehouse shift.

greenhouse

Plus microfaunal differences resulting

GREENLAND

from basin isolation during the

Paleocene – Eocene transition.

As well as potential Paleogene

Disko-

Nuussuaq

oil-prone source rocks.

WEST

Kangerlussuaq

First let's look at how plate tectonic opening

and Greenland mantel plume uplift

affected North Atlantic oceanography.

Early Paleocene

Prior to uplift of the Greenland plume

the North Atlantic and NW Europe

comprised an open marine region

dotted with low subtropical islands.

There was little clastic input due to the low relief so that the warm clear seas contained calcareous-rich microfaunas.

Including calcareous foraminifera and nannoplankton

NORTH SEA DANIAN MARINE BIOFACIES

LOW RELIEF LITTLE CLASTIC INPUT CALCAREOUS WATER CHEMISTRY S B 0 Q Ş organic Q recycling Ş Q Ş

CALCAREOUS

benthic foraminifer

ORGANIC WALLED

dinoflagellate cysts

CALCAREOUS

planktonic foraminifera

CALCAREOUS

coccoliths

Late Paleocene

But uplift of the Greenland mantle plume had a major impact on both the sedimentation and microfaunas. It diverted North Atlantic plate

tectonic opening to the west

of Greenland

and it increased the amount

of clastic input into the basin

around the

uplifted plume.....

.....resulting in a shift from calcareous to siliceous microfossils

especially in the North Sea, Norwegian-Greenland Sea and NW Europe

NORTH SEA SILICEOUS MARINE BIOFACIES

SILICEOUS BENTHIC

arenaceous foraminifera

ORGANIC WALLED PLANKTONIC

photosynthetic dinoflagellates

SILICEOUS PLANKTONIC

radiolaria sporadic diatoms

carnivorous dinoflagellates

as seen in the early to late Paleocene shift from

calcareous-rich to siliceous-rich assemblages

But the greatest change occurred during

the Paleocene-Eocene transition

because this was the period of maximum mantle plume uplift

resulting in an enormous shift in the oceanographic framework

and the separation of three distinct marine systems.

LATEST PALEOCENE AND EARLIEST EOCENE BASIN ENCLOSURE

It also resulted in land bridges used for mammalian migrations

LATEST PALEOCENE AND EARLIEST EOCENE BASIN ENCLOSURE

as well as massive changes in marine biotas within the enclosed basins

causing the North Sea biotic crisis

with the microfaunal assemblages becoming dominated first by arenaceous forams and then by coscinodiscid diatoms.....

that were preyed upon by the diatom-eating carnivorous dinoflagellates such as Apectodinium, Ceratium and Deflandrea

with basin stratification causing bottom-water anoxia and the deposition of oil-prone sapropel rocks.

LATEST PALEOCENE AND EARLIEST EOCENE BASIN ENCLOSURE

This situation is well-documented in the North Sea basin system including the Norwegian-Greenland Sea and Faroe Shetland Basin

LATEST PALEOCENE AND EARLIEST EOCENE BASIN ENCLOSURE

and it is predicted in the Labrador / Baffin seaway where existing but limited data indicate diatom-dominated microfaunas similar to those in the North Sea

So our integrated model explains the assemblage changes that occurred during the Paleocene

and the biotic crisis spanning the Paleocene-Eocene transition

But how does this relate to the Palaeocene Eocene Thermal Maximum?

The biotic crisis and PETM were both caused by Greenland plume uplift

because the PETM was triggered by greenhouse gases

associated with extensive Greenland plume volcanism

With greenhouse levels being amplified by methane expulsion from submarine gas hydrates (methane clathrates)

sapropel deposition due to basin enclosure was amplified by the PETM

which increased water temperature and reduced oxygenation still further

with the warm-water Apectodinium acme resulting from the PETM

which was first proposed by Bujak & Brinkhuis in 1997

The biotic crisis was terminated by mantle plume collapse and the Ypresian marine transgression that extended across the entire region

marking the break between Paleocene and Eocene tectonics and oceanography in the North Atlantic and NW European region

	SERIES	STAGE	dinoflagellate cysts photo- synthetic other Apectodinium			diatoms		benthic forams agglutinated calcareous		BIOTIC CRISIS	BIOTIC CRISIS		STRAT SEQUENCE		PALY ZONE	
54-	ENE			Î						Basal Eocene transgr				Frigg I	DE2	
	WER EOCH	YPRESIAN											—e1 —	Balder	DE1c to DE1b	
55-	Ľ									biotic crisis			— e0 —	Dornoch	DE1a	_
56-	UPPER PALAEOCENE	THANETIAN		Ļ	,							PETM	— p9 —	Forties	DP6b	
										•			~~~		DP6a	
										Near Top Palaeocene uplift			— p8 —	Lista IIIb	DP5b	
														Lista Illa		

INTO THE EOCENE

GREENLAND

Balfin Bay

Towards modern oceanography and climate

		North Sea	pro-		
Proto Guil Stroom	NG2	12/10/	MID OL NORTH ATL	IGOCENE ANTIC OCEAN	
\ · · · · · · · · · · · · · · · · · · ·		(a As	Land	Basin	
N N		A	Shelf	Surface Current	
	Antarctic Bottom Water	(- z			10 m

Late Cretaceous

NORTH ATLANTIC TERTIARY SEA-FLOOR SPREADING

but spreading continuing to the west of Greenland until the middle Eocene - resulting in a triple junction

Collapse of the plume also caused widespread marine transgression

but connections between the northern Atlantic and North Sea / Norwegian-Sea system were still narrow or remained closed

greenhouse

greenhouse to icehouse shift

played a major role during the

This lack of open oceanic connection

icehouse

because the associated fall in air and

icehouse

sea-surface temperature (SST) had an enormous impact

on Eocene to Holocene biotas in mid and high latitudes

including the North Sea

greenhouse

The base Middle Eocene Arctic Azolla event was the initial trigger

for the greenhouse to icehouse shift

The associated cooling resulted in diachronous ranges because the three

N Atlantic basin systems retained their independent temperature regimes

So we see this temperature difference in subbasins that are just a few

kilometres apart such as the southern North Sea and Hampshire Basin

and between the Rockall Trough and Faroe Shetland Basin

This is why North Sea dinocyst ranges can result in

erroneous ages assignments in Rockall wells

.....which have a biostratigraphic succession that is more similar to that

of the Scotian Shelf, Grand Banks and NE Newfoundland basins

GREENLAND

Balfin Bav

NFB

This is clearly shown when we plot the ranges

of dinocyst species in the different basins

FENNOSARMATIA

Barents

North Sea

Norwegian-Greenland GREENLAND

Balfin Bav

LAURENTIA

NFB

Barents

North Sea

Norwegian-Greenland

Here's an example from the Tethyan region

northwards through the North Atlantic

into the North Sea Basin system...

FENNOSARMATIA

.....a Tethyan – N Atlantic – N Sea / Norwegian-Greenland Sea transect through time

which shows that the extinction of temperature-sensitive dinocysts is diachronous in different SST regimes (e.g. Thalassiphora delicata)

and that they occur later to the south

This indicates that the North Sea / N-G Sea system had a cooler SST than the North Atlantic System

and that the North Atlantic was cooler than the Tethys (as we would expect)

It also shows that cooling did not significantly affect the Tethyan region until the Terminal Eocene Event

The succession of cooling steps is reflected by changes in sea-surface (dinocysts) and air temperatures (angiosperm pollen)

as well as the isotope record

The close correlation of these events indicates that they do not reflect local facies changes

and that they were caused by a succession of Eocene cooling steps associated with the greenhouse to icehouse shift

The cooling steps correspond to NW European stage or substage boundaries because the stages were originally defined on major changes observed in the North Sea / NE European basin system

Plate tectonic spreading between Spitsbergen and Greenland opened a seaway deep enough for benthic forams to migrate into the Arctic.....

.....and it also deepened the Norwegian-Greenland Sea

Initiating the proto-Gulf Stream and shifting circulation

towards today's North Atlantic oceanographic system

With its icehouse climate and succession of glacial-interglacial cycles

Glacial

Interglacial

Nuussuaq GREENLAND

ALL OF THESE FACTORS ARE TAKEN INTO ACCOUNT

IN BUJAK'S NORTH SEA - WEST OF SHETLAND

PALEOGENE STRATIGRAPHIC DATABASE

ORCUPINE

DISKO-Nuussuaq GREENLAND

WHICH ALSO INTEGRATES THEM WITH

THE SEQUENCE STRAGRAPHIC FRAMEWORK

PUBLISHED IN A SERIES OF PAPERS

BY BUJAK, COPESTAKE AND MUDGE

PORCUPINE

THE BUJAK DATABASE DOCUMENTS THE **SEQUENCE AND BIOSTRATIGRAPHY OF 1155 OFFSHORE WELLS TO PROVIDE** CONSISTENT CORRELATIONS ACROSS THE **NORTH SEA AND WEST OF SHETLAND REGION** WITHIN THE COMPLEX OCEANOGRAPHIC AND **CLIMATIC DEVELOPMENT OF THE NORTH ATLANTIC**
Disko-Nuussuaq GREENLAND

IT IS UNIQUE IN ITS APPROACH

AND AN INVALUABLE AID FOR

NORTH SEA AND WEST OF SHETLAND

PETROLEUM EXPLORATION AND DEVELOPMENT

PORCUPINE

Disko-Nuussuaq GREENLAND

FOR FURTHER DETAILS CONTACT

INFO@MERLINENERGY.CO.UK

JONATHANBUJAK@OUTLOOK.COM

LABRADOR

ORCUPINE